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Synopsis
A theoretical discussion is given of the range of heavy ions with moderate 

velocity. The treatment is based on the theory of quasi-elastic collisions given 
elsewhere. The region where electronic and nuclear stopping compete is of par
ticular interest. Use is made of a simple velocity proportional Thomas-Fermi type 
formula for electronic stopping, and a universal approximate differential cross 
section for scattering. Simplified models of nuclear scattering assuming power 
law scattering are also included. They turn out to be useful for exploratory com
putations of various range quantities.

The straightforward theory of ranges is studied in § 2. Range curves are 
computed for any atomic numbers of particle Zn and substance Z2. It is found 
that when nuclear stopping is dominating, a q - e plot gives a universal range energy 
description.

Probability distribution in total range and various averages are studied 
(§ 3), in order to assess corrections to measurements when necessary. Similarly, 
corrections to measurements of projected ranges are obtained (§ 4). The range 
correction due to nuclear stopping is obtained for ions of high initial energy.

In § 5 a survey is given of numerous recent measurements of range. They 
are found to be in fair accord with theoretical results, for energies between 100 
MeV (fission fragments) and ~ 1 keV.
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§ 1. Introduction

The present paper is a theoretical study of ranges of heavy ions of low 
velocity, and their connection to the basic problem of quasi-elastic collisions 
between ions and atoms. Three characteristic features give rise to com
plications. First, both electronic and nuclear stopping must be studied 
thoroughly, because they are similar in magnitude. Second, because of the 
frequent large deflections of the ions one must distinguish carefully be
tween various range concepts. Third, the variety of choice of atomic number 
of both ion and substance gives an additional difficulty. We shall try to 
show that our present knowledge of quasi-elastic collisions, in spite of the 
above complications, can give us a simple and fairly accurate range theory. 
In point of fact, in the following we use a much simplified description of 
quasi-elastic collisions, which could be improved upon without difficulty. 
Aspects of quasi-elastic collisions are studied also in three associated papers: 
Notes on Atomic Collisions I, III, and IV. The aim is to exploit similarity 
properties of Thomas-Fermi type in collisions between heavy ions and atoms. 
In fact, similarity enables us to treat in a comprehensive way both slowing
down and damage effects by heavy ions.

The total range of a swift particle may be observed in track detectors 
like photographic emulsions. The observation of many tracks can then give 
the probability distribution in total range. In measurements of this kind the 
observed range depends on energy losses only, and not on scattering of the 
particle. For energetic heavy particles this separation of energy loss from 
scattering is especially valuable, since the two are due to unconnected pro
cesses, i. e. respectively electron excitation and Coulomb scattering by the 
atomic nuclei.

However, in nearly all other cases one observes somewhat different and 
less well-defined types of ranges. It is then customary to make corrections 
for multiple scattering in order to obtain the total range, but since these 
corrections are not insignificant—even in cases like high energy protons where 
deflections are small—it would seem appropriate to introduce explicitly these 
other types of ranges.

1*
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The scattering of a particle—in contrast to its energy loss—is always 
dominated by nuclear collisions, i. e. deflections in the screened electric 
field of the atom. In the case of electrons, large scattering angles are quite 
common during slowing-down. For heavy particles of high energy (e. g. 
protons with MeV-energies), scattering effects are relatively small, but since 
a high precision is desirable here, the distinction between different types 
of ranges again becomes important. Although the description in the following 
could be applied to electrons and to fast heavy particles, we shall aim at 
the case mentioned in the beginning of the introduction. In fact, for heavy 
ions of low velocity, e. g. v~vo = e2/h, scattering effects are large and the 
scattering can not be completely separated from energy loss, simply be
cause the nuclear collisions here begin to dominate the energy loss too. 
This somewhat complicated case will be used as a basic example in our 
general discussion of range concepts.

The following discussion does not at all pretend to give an exhaustive 
treatment of range concepts. Thus, we are throughout concerned with stop
ping by a random system of atoms, i. e. uncorrelated atoms and separated 
collisions. This might never seem to include stopping of a relatively slow 
heavy ion in a solid, where the interatomic distance is short and atoms are 
arranged in a periodic lattice. Still, the effects are only sometimes large; 
they are not well understood and appear to be dependent on the structure 
of the lattice (cf. § 5).

Before turning to the various—and often complicated—range concepts 
and range distributions, we may take a more straightforward point of view. 
In § 2 we proceed as if the energy loss along the path was a nearly con
tinuous process. This is not at all a poor first approximation. It both 
enables us to get a clearer picture of the essential points and permits com
parisons with experiments (cf. § 5).

§ 2. Simple Unified Range Theory

Suppose that the range along the path is a well-defined quantity, so that 
we need not distinguish between e. g. average range, most probable range, 
and median range. We may introduce first the simple concept of specific 
energy loss, (dEjdR),—or average energy loss perunit path length—defined by

dF
N ■ S = N\daT,

dR J 
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where N is the number of scattering centres (e. g. atoms) per unit volume 
and S the stopping cross section per scattering centre. Further, t/cr is the 
differential cross section for an energy transfer T to atoms and atomic 
electrons.

The basic range concept is then obtained simply by integration of (dE/dR), 

tK dE'____ 1 dE'
1 ) J0(dE7dR) NJoS(E')’ ( ' *

The formulations (2.1) and (2.2) give a simple connection between range, 
specific energy loss, and differential cross section. We do not at present 
distinguish between different types of ranges. A better understanding of the 
connection between (2.2) and e. g. the average range is obtained in the 
detailed discussions in § 3.

In an analogous way we may introduce the range straggling (cf. Bohr 
(1948)). Similarly to (2.1) the average square fluctuation in energy loss 
becomes

(ÂË)2 = NQ2dR = NdR^doT2 , (2.3)

if the individual events have average occurrence NdRda, and are uncor
related. We may next derive the average square fluctuation in range, (AR)2, 
using the present assumption that fluctuations are small,

z/1 m2 = (EdE'NQ2(E') = J. rEdE'-£E(E') 
( 9 Jo (dE'/dR)3 N2J0 S3(E') (2-4)

If we were precise, we would say that the interpretation of (2.4) as the 
average square fluctuation in range is not quite correct. For the present pur
poses, however, we have by means of (2.2) and (2.4) defined the range, 
R, and its fluctuation, AR, and the results are sufficiently accurate for most 
purposes. We now use (2.2) and (2.4) in a first study of the ranges of slow 
heavy ions.

Quite apart from using at first simple expressions like (2.2) and (2.4), 
it seems important—at the present stage of accuracy of theory and ex
periments—to be able to give a comprehensive description of slowing-down. 
It would for instance be futile to aim at an individual stopping curve for 
every one out of ~104 possibilities for the set of atomic numbers (Zx, Z2), 
where the suffixes 1 and 2 denote the penetrating particle and the atoms 
of the medium, respectively. If we are concerned with very high velo
cities, where the Bethe-Bloch stopping formula applies, the question of 
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dependence on Zx drops out because the stopping is simply proportional 
to Z2. In that case the dependence on Z2 is not far from being given by a 
Thomas-Fermi description, i. e. Bloch’s relation 1 = Z2-70, and only when 
high accuracy is demanded need we introduce deviations from the Thomas- 
Fermi results. Considering again the present case of comparatively low 
velocities, where the stopping is not proportional to Z\, it is very important 
that descriptions of a Thomas-Fermi-like character are introduced, even 
though the resulting accuracy might not be high.

In point of fact, we hope to show in this section, and in § 5, that a Thomas- 
Fermi-like treatment of the dependence on both Zx and Z2 has a quite 
satisfactory accuracy at the present stage of experimental precision. Our 
treatment should be based on a self-contained theory of the quasi-elastic 
collisions between ions and atoms. This theory will not be derived here; 
it is studied in two associated papers (Notes on Atomic Collisions, I and 
IV, unpublished). We shall merely summarize a few results of interest to 
us in the present connection (cf. also Lindhard and Scharff, (1961)).

Electronic stopping

It is well known that for penetrating charged particles of high velocity, the 
energy loss to atomic electrons is completely dominating. The corresponding stopping 
cross section per atom is denoted by .S'e, so that the specific energy loss is N-Se, 
where N is the number of atoms per unit volume. At high velocities Se increases 
with decreasing particle velocity and has a maximum for a velocity of order of 

2/3zq = i’o Zi - However, we shall consider low velocities only and in fact assume that 
0 < v < vi. In the whole of this velocity region simple theoretical considerations lead to 
velocity proportional stopping, and a Thomas-Fermi picture shows that (Notes on 
Atomic Collisions, IV; see also Lindhard and Scharff (1961)) 

2 Zi Z2 p
Se = ‘ 8 Tie C1q ' y ' 77 -z 2/3I) < I’i = l’o • Zf , (2.5)

where the constant is of order of Z^6, and Z2/3 = Z2/3 + z|/3. It is interesting that 
the approximate formula (2.5) holds down to extremely low velocities, i. e. also for 
v<<vo, in contrast to previous theoretical descriptions, where Se was assumed to 
vanish for p<z?o (cf. Bohr (1948), Seitz (1949)).

It should be emphasized that (2.5) is approximate in more than one sense. The 
constant in (2.5) is based on Thomas-Fermi arguments, and it is to be expected 
that fluctuations around this constant can occur, especially for Z1< 10*.  Moreover, 
a precise proportionality to v will not be correct over the whole of the velocity 
region v <v±. However, in the present context we shall not analyse electronic stopping 
in detail. As to stopping near the maximum p~p1, cf. Northcliffe (1963).

* The presence of such ionic shell effects is confirmed in the systematic measurements by 
Ormrod and Duckworth (1963), Wijngaarden and Duckworth (1962).
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Another important circumstance may be mentioned. The energy loss to elec

trons is actually correlated to the nuclear collisions, and in close collisions con
siderable ionization will take place. Although the correlations are fairly well known, 
we disregard them in first approximation and consider electronic stopping as a 
continuous process. The correlation may be of some importance especially in stragg
ling or higher order moments of the range.

Nuclear stopping and scattering cross section

A basic quantity is the nuclear stopping cross section, Sn. However, since the 
energy transfer in individual collisions can be quite large, the slowing-down by 
nuclear collisions cannot always be considered as a nearly continuous process. It 
is therefore important to know the differential cross section too. We shall here con
sider various approximations, of which the first one lends itself to a particularly 
simple mathematical treatment.

Suppose that there is a potential V(r) between the ion and the atom, such 
that V(r) = (ZiZ2e2 Qg^/s rs), with as «a a = 0.8853 a0 Z~13 (the number 0.8853 = 
(9 yr2)1/3 2~7/3 is a familiar Thomas-Fermi constant). It is interesting that then the 
classical differential scattering cross section may be obtained approximately from 
an extrapolated perturbation procedure (Notes on Atomic Collisions I), leading to 
the simple result

_Cn dT 
rpY—XIS zpl+l/s’ 
1 m 1

s>l, (2.6)

for an energy transfer T from the ion of energy E to an atom at rest. Here T< Tm = 
_ O

yE = E, Tm being the maximum energy transfer in the col
lisions. Furthermore, the constant Cn is connected to the stopping cross section Sn, 
and is approximately given by

C. S„, (2.7)

where the collision diameter b is equal to 2 Mqv2 , Mq = Mi M2KM1 + M2).
In the particular case of s = 1, i. e. simple Coulomb interaction, equation (2.6) also 
gives the correct Rutherford scattering, but in this case Sn in (2.7) does not represent 
the stopping cross section, the convergence of which is a result of adiabaticity in 
distant collisions.

As we shall demonstrate below, formulas of type of (2.6) are valuable for ex
plorative purposes, interesting values of s being 1, 3/2, 2, 3 and 4. The cross sections 
(2.6) are furthermore in accord with the Thomas-Fermi scaling of units. Corre
sponding to the case of s = 2, we shall sometimes approximate Sn by constant 
standard stopping cross section (similar to that quoted by Bohr (1948)),

= (ti2/2.7183) e2 00^1^2 Mi - Z-1/3 (Mi+ M2)“1. (2.7')

Beside the simple power potential we study the case provided by a screened 
potential, U(r) = (Zi Z2 e2/r) • <po (r/a), where <po is the Fermi function, and further
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2/3 2/3 _ 1/2a = ao 0.8853 (Zj + Z2 ) , which is a fair approximation to the ion-atom force.

Bohr (1948) has employed a similar potential, with exp (—r/afi) in place of <p0(r/a); 
however, an exponential function falls off too rapidly at large distances.

A screened Coulomb potential, involving only one screening parameter, a, leads 
for dimensional reasons to a natural measure of range and energy, for an ion col
liding with atoms at rest. In fact, we may introduce, respectively,

Mi
o = RNM2 • 4 7t a2 —-----77—5 ande (Mi + M2)2

aM2
E = E Zi Z2 e2 (Mi + M2) (2.8)

as dimensionless measures of range and energy. Note that e_1 is essentially the 
parameter £ used by Bohr (1948). The scattering in the screened potential, U(r), 
is obtained by means of the extrapolated perturbation method for classical scattering 
used in deriving (2.6), and one obtains a universal differential cross section

der = na2—/(Z1/2),2 /3/2 ' v " (2-9)

where t1/2 = £-sin(#/2) and & is the deflection in centre of gravity system. When 
elastic collisions are assumed, we find sin2(#/2) = (T/Tm), where 7' and Tm are the 
energy transfer and its maximum value, respectively, in a collision with an atom 
at rest. The function /(f1/2) is shown in Fig. 1. At high values of t it approaches 
the Rutherford scattering. In Fig. 1 is also shown (2.6) for the case of s = 2.

It may be noted that the power law (2.6) leads to f = fs, where
11

fs(t1/2) = 4-f2 % 0.3<Âs<l. (2.6')

In the above, we have at first considered approximate potentials representing the 
ion-atom interaction and next, in an approximative way, derived the scattering 
from the potentials. However, we shall in the following take a simpler and more 
direct point of view. We consider (2.6) and (2.9) directly as approximations to the 
true scattering cross section and disregard the connection to a corresponding po
tential. This is the more justified, since the scattering is only quasi-elastic and 
cannot in detail be described by a potential between two heavy centres.

From (2.9) and Fig. 1 may be derived the nuclear stopping cross section, by 

means of the formula (de/dg^ =\dx /(x) e-1. The result is shown in Fig. 2, together 
•'0

with the stopping from (2.6) for s = 2. Also the electronic stopping may be ex
pressed in Q — e units, and is then (deldo)e = k-E1/2, where the constant k varies 
only slowly with Zi and Z2, and according to (2.5) is given by

0.0793 Z}/2 Z2/2 (Ai + A2)3/2

(z2/3+z|/3)3/4 a3/2 a2/2
(2.10)

Thus, k is normally of order of 0.1 to 0.2, and only in the exceptional case of Z\< < Z2 
can k become larger than unity. If Zi = Z2, Ax = A2, the constant k is given by 
the simple expression k = 0.133 z|/3A2 1/2. A representative case of electronic stop-
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Fig. 1. Universal differential scattering cross section for elastic nuclear collisions, (2.9), based 
on a Thomas-Fermi type potential. At high values of f1/2 it joins smoothly the Rutherford scat
tering. The cross section corresponding to power law scattering (2.6), or (2.6'), with s = 2 is 

also shown.

cfe/cfç
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Fig. 2. Theoretical nuclear stopping cross section in q - e variables. The abscissa is e1/2, i. e. 
proportional to v. The full-drawn curve is {de/dQ)n, computed from Fig. 1. The horizontal 
dashed line indicates (2.7'). The dot-and-dash line is the electronic stopping cross section, ke1!1,

for k = 0.15.
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Fig. 3. Universal range-energy plot for £<1, cf. § 2 and § 3. The curve Th.-F. gives ^(e), i. e. 
(2.2), as a function of e with neglect of electronic stopping. Curves for various values of the 
constant k in electronic stopping are also shown. Dotted straight line is the standard range, 

g = 3.06 e.

ping, k = 0.15, is shown in Fig. 2. Formula (2.10) applies for v<vi, or approximately 
e < 103. In the above we have for simplicity distinguished between electronic ex
citation and elastic nuclear collisions. This is not quite justified, since in close col
lisions there is a strong coupling between the two, i. e. the nuclear collisions are 
not elastic. In first approximation this need hardly be taken into account; the 
reader is referred to Notes on Atomic Collisions IV for a more detailed treatment 
of quasi-elastic collisions.

The nuclear scattering cross section is expected to be fairly accurate, but while 
shell effects should be of little importance, a systematic overestimate may occur, 
due to neglect of inelastic effects. A more thorough discussion is given in Notes 
on Atomic Collisions I. At low energies nuclear stopping dominates over electronic 
stopping (2.5). It must be emphasized though, that at extremely low £-values, 
£<10~2, the nuclear scattering and stopping becomes somewhat uncertain, be
cause the Thomas-Fermi treatment is a crude approximation when the ion and the 
atom do not come close to each other.

Range-energy relations

By means of the simple formula (2.2), and the above stopping cross 
sections, we are now able to estimate total ion ranges. Now, if we consider 
nuclear stopping only, and one screening length a in the scattering, the
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Fig. 4. The continuation at higher e-values of the ranges Q1(e) in Fig. 3, for various values of 
constant k in electronic stopping. Straight dot-and-dash line is hypothetical range without 

nuclear stopping and k = 0.1.

dimensional arguments leading to (2.8) apply, and in these units the range 
in (2.2), (), must be a function of e only, i. e.

Q = e(£)

for all ions and atoms. This formula holds both when (2.7) and when (2.9) 
is introduced in (2.2). The resulting range, based on (2.9) and /(f1/2) from 
Fig. 1 is shown by the solid curve in Fig. 3, for relatively small values of 
E. The particular approximation of s = 2, i. e. the constant standard stopping 
cross section in (2.7') and Fig. 2 leads to the straight line q = 3.06 £ in 
Fig. 3. This standard range is closely similar to the range formula used by 
Bohr (1948) and also by Nielsen (1956). For small e-values the numerical 
curve remains above the straight line and has a downward curvature, 
corresponding to the effective power of the potential being higher than 2, 
in fact of order of 3. The detailed behaviour of the range curve can be 
easily understood from the stopping curves in Fig. 2. If we use the straight 
line as a standard in Fig. 3, i. e. the horizontal line as a standard in Fig. 2, 
the range must at first be higher than the standard straight line in Fig. 3. 
Next, since the actual stopping rises above the horizontal line, the range 
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must drop considerably relative to the straight line, and actually fall below 
it. Finally, since the nuclear stopping becomes small in the high energy 
region with Rutherford scattering, the range must again increase above the 
straight line as may be seen in Fig. 4.

In this description we have so far omitted electronic stopping. This 
omission is justified at low energies because Se/Sn tends to zero for small 
velocities, but at higher energies it becomes less and less adequate until the 
range finally is dominated by the electronic stopping, as may be judged 
from the stopping cross section in Fig. 2. Let us therefore take electronic 
stopping into account and write

de 
dg (2.11)

where (de/dg^n is shown in Fig. 2, and the electronic stopping is assumed 
to be proportional to e1/2, i. e. we are concerned with moderate velocities, 
l><vi. We choose a number of representative values of the constant k, 
k = 0.05, 0.1, 0.2 and 0.4. Values of k between 0.1 and 0.2 are quite com
mon, according to (2.5). In Figs. 3 and 4 are shown the range curves for 
the above four values of k. The most conspicuous effects of electronic 
stopping are, first, that it leads to appreciable range corrections even at 
quite low s-values. Second, for £ large compared to unity, the reduction in 
range always dominates, so that the range never increases above the straight 
line g = 3.06 £, in contrast to the range with neglect of electronic stopping. 
In Fig. 4 is also shown the hypothetical range g = (2//c)e1/2, which would 
result if there were no nuclear stopping, in the case of k = 0.1 .

By means of curves like those in Figs. 3 and 4 we are able to compare 
or estimate ranges for all ions in all substances. But only for e-values below, 
say, e = 10 are curves for the various k-values fairly close together and 
easy to compare. For light ions in heavy substances deviations start at even 
smaller e-values, because k becomes quite large. Moreover, only for these 
low values are we able to check in a direct manner the nuclear stopping, 
which here remains dominating.

Although we may well use Fig. 4 for estimates of ranges when £>>10, 
we can in this case introduce a more critical comparison between theory 
and experiments. In fact, it is apparent from Fig. 2 that for high values of 
£ the range is mainly determined by the electronic stopping, and only a 
minor range correction is due to nuclear stopping which dominates at low 
values of £. Since nuclear stopping drops off quickly while electronic stopping 
increases, the nuclear stopping correction to the range remains fairly con-
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Fig. 5. Range corrections for nuclear stopping, (Zc/2) A(k, e), from equ. (2.12). Curves are shown 
for k = 0.1, 0.2, 0.4 and 1.6. Asymptotic values are roughly A -> 1.76 • Ar-3^2.

stant above a certain value of e. We then introduce an extrapolated elec
tronic range

, (,£ de' Ç£ de' l* £ (de'/d())n- de'
Qe £ \{de’ldQ)e \{de'/dp) + J0(de7dp)-(de'/dp)e (2.12)

= Q (e) + A (k, e).

The quantity A(k, e) can be computed from the above formulas, and adding 
A to an observed p(t), we obtain the extrapolated electronic range, which 
in our case of v<vi should be equal to pe = (2/Å-) e1/2 (cf. dot-and-dash line 
in Fig. 4).

The function A(k, e) is shown in Fig. 5 for À-values between 0.1 and 
1.6. This procedure is probably the most direct way of comparing theoretical 
predictions of electronic stopping like (2.5) with range observations. The 
point is here that A often is a relatively small correction, and in estimating 
the range correction A we may use (2.5), even if this formula be not too 
accurate. Examples of the application of (2.12) and Fig. 5 are shown in 
§ 5, cf. Figs. 14 and 15.
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Another circumstance may be noted in this connection. Since A tends 
to a constant at high e-values, we may moreover use (2.12), together with 
Fig. 5, for comparisons with measurements at high e-values, i. e. v>>v\, 
where, electronic stopping no longer increases proportionally to u, but in
stead decreases approximately as v to a power between -1 and -2.

In the present paragraph we do not make comparisons with actual range 
measurements, one of the reasons being that measured ranges require 
corrections of the kind discussed in § 4. Instead, we have presented these 
comparisons in § 5, where recent measurements are compiled. We do not 
discuss critically the accuracy of the measurements; this is perhaps un
satisfactory, because several new experimental methods have been applied. 
We merely make approximate and obvious range corrections, corresponding 
to the results in § 4. One result emerging from § 5 is that the theoretical 
nuclear stopping, as leading to the range curves in Figs. 3 and 4, for moderate 
e-values appears to be in good agreement with observations, perhaps within 
~20 percent. It should be noted that the theory is somewhat uncertain at 
quite low e-values, i. e. e< 10~2.

Beside the general experimental checking of the present range-energy 
relations there are several other ways of comparison. An immediate pos
sibility is to measure directly stopping powers, which has been done in a 
few cases, but mostly when electronic stopping dominates. We shall not 
enter more critically into these questions, since the theory of electronic 
stopping is not the topic of the present paper. Nor will we attempt a detailed 
discussion of individual inelastic collisions between energetic ions and atoms 
at rest. But it may be mentioned that more subtle comparisons of ranges may 
be made. For instance, isotope effects are quite informative, and can elucidate 
both electronic and nuclear stopping, cf. § 5.

Range straggling

The simple description used here, with a range along the particle path 
based on (2.2), may now be extended to include an average square fluctuation 
in range, given by (2.4). This description contains the assumption that range 
fluctuations are relatively small. We may suppose that the fluctuations 
around the average correspond nearly to a Gaussian. In fact, if this were 
not so, the distribution in range would have a sizable skewness. Then we 
would have to distinguish between e. g. the most probable and the average 
range, and the simple relation (2.2) would have to be revised. Still, even 
in such cases the results in the present paragraph may be useful. We can 
in fact consider the present ranges, i. e. (2.2) as an approximation to the
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Curves are shown for several values of constant k in electronic stopping.

average range, and similarly consider the present range fluctuation, i. e. 
(2.4), as an approximation to the average square fluctuation in range. These 
averages are defined irrespective of the skewness of the distribution; they 
are studied in more detail in § 3, where also the accuracy of the present 
treatment is discussed more closely.

It is convenient to consider the relative square straggling in range, 
(Zl{>/@)2 = (AR)2/R2. Consider first nuclear stopping only, and in particular 
the power potentials represented by (2.6). Then we easily find

MeV 1_
\Q ) s(2s- l)7’ (2.13)

where y = 4MxMzKMi + M2}2. We thus obtain the extremely simple result 
that the relative straggling is independent of the range itself. It is moreover 
interesting to note that the result (2.13) is rather insensitive to s in the neigh
bourhood of s = 2. When s increases from 2 to 3 the relative square straggling 
decreases by only 20 percent. Thus the simple model predicts that at low 
energies (d@/@)2 should be of order of y/6 (cf. also Lindhard and Scharff 
(1961), Leachman and Atterling (1957), Harvey (I960)). We have here
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Fig. 7. Absolute straggling in range at high values of e. Saturation values of the straggling 
are indicated.

considered the application of (2.6) to the simple formulas (2.2) and (2.4). 
A more detailed study of the probability distribution in range is made in 
§ 3, on the basis of the power law scattering (2.6). It is shown there that 
the right hand side of (2.13) is only the first term in a power series expansion 
in y.

We next apply the numerical Thomas-Fermi-type cross section (2.9) for 
scattering in nuclear collisions. We do this at first with neglect of electronic 
stopping, and by means of (2.4) we compute (Zlp/@)2-y“1 against e, as shown 
by the upper curve in Fig. 6. The relative straggling is seen to behave as 
expected from the simple power potential. Next, we include electronic 
stopping, using (2.5) and assuming that the contribution to straggling from 
electronic stopping is negligible*.  Clearly, it must lead to a reduced relative 
straggling. The results are shown in Fig. 6, for k = 0.05, 0.1, 0.2, 0.4 and 
1.6. At e-values around 1 to 10 a considerable reduction in the relative 
straggling sets in. The reduction corresponds to the circumstance that in this

* This assumption can be questioned, since quasi-elastic collisions imply a correlation be
tween the two types of energy loss, i. e. nuclear and electronic stopping. The assumption re
quires that a considerable part of electronic stopping occurs at impact parameters where recoil 
of the atom is small or moderate. 
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region electronic stopping has become quite dominating, and the absolute 
value of the square straggling, (zip)2, does not increase much beyond this 
point. For high c-values it is then convenient to consider the absolute value 
of the range straggling. The corresponding curves are given in Fig. 7, for 
various values of k. We therefore conclude that accurate measurements of 
straggling in range at high energies, where the electronic stopping does not 
at all correspond to (2.5), may give information about the predicted values 
of k, as given by (2.10).

The above treatment of simple ranges and range straggling is intended to be 
fairly comprehensive, and from the accompanying curves it is easy to obtain rea
sonable estimates of these quantities for any value of Zlf Ai, Z2, A2 and v. How
ever, we have disregarded completely those cases where the substance contains 
several atomic elements, Z2^, Z22), etc., in given ratios. In all such cases, the nuclear 
stopping contribution from each element may be derived from the solid curve in 
Fig. 2, with a rescaling of units. The electronic stopping contributions are obtained 
from (2.5) or (2.10). The resulting ranges can be derived by numerical integration. 
However, considerable simplification occurs in an energy region where, e. g. the 
stopping cross section SW, due to any atomic component i, is proportional to the 
same power of E, because in this case straightforward computations of averages may 
be made. For two components, a and b, we have R = RaRb(Rb^a + Ra (1 - æa))_1, 
where Ra and Rb are the ranges in a and b, and xa and 1—are the relative 
abundances of a and b. Similar procedures may be used in the case of straggling 
in range.

§ 3. Distribution in Range Measured Along the Path

In the present chapter we shall try to go one step beyond the treatment 
in § 2, where only a simple range straggling was considered, and where it 
was tacitly assumed that straggling effects were small. We wish to check 
the validity of this picture and also to extend it. A basic reason for the 
extended treatment are the large fluctuations, known to result from encounters 
between slow heavy ions and atoms. We therefore attempt to study the proba
bility distribution in range measured along the path. Although this distribution 
is much simpler than the distribution in space of the endpoint of the path, 
it is not easily obtained. One might perhaps employ Monte Carlo methods*  
for the solution of representative cases, but we shall limit the treatment to 
typical and simple approximations, and in particular consider the power law 
scattering cross sections given by (2.6).

Consider again a particle (Z}, At) with energy E, in a medium (Z2, A2).
* Monte Carlo methods were applied by e. g. Robinson, Holmes and Oen (1962) to various 

models of nuclear scattering, but with neglect of electronic stopping, cf. also Holmes (1962).
Mat.Fys.Medd.Dan.Vid.Selsk. 33, no. 14. 2 
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We denote by /? the range measured along the particle path, i. e. the total 
distance traversed by the particle. Let p(R, E)dR represent the probability 
that the particle has a range between R and R + dR, so that

/»OO /» GO

\ p (E, R) dR = 1 and < Rm > = \p (E, R) Rm dR . 
•'o *o

An integral equation for p (E, R) may be derived as follows. Suppose that 
the particle with energy E moves a path length ÔR in a medium containing 
N atoms per unit volume. There is then a probability NöRdon e for a col
lision specified by energy transfer ' Tei to electrons (electrons labelled 

i
by suffix i) and by an energy transfer Tn to translational motion of the 
struck atom. The particle will thus have an energy E- Tn-^ Tei. If the col- 

i
lision takes place, the particle has a probability p(R-ôR, E- - JS Tei) 

i
of obtaining the total range R. Multiplying by the probability of collision, 
NôRdon,e, we get the contribution from this specified collision to the total 
probability for range R. We next sum over all collisions. There is left a 

probability 1 - N ôR\d on e that no collision occurs. In this event we clearly 
get a contribution (1 - NÔR^don ^-pÇR-ôR, E) to the total probability for 
the range R.

Collecting the above contributions we have an alternative expression 
for p (R, E),

p (R,E)-NåR\ </<r„ ,p(fi-»R, E - Tn - VT,()
* i

+ (1 - NôR^don 0 • p(R-ôR, E),

and in the limit of 0R^>(),

dpp-p-- -N S(7i> E ~T- ~-p E) i ■ <3J ’
which expression constitutes the basic integral equation governing the pro
bability distribution in range along the path. In the remainder of this chap
ter we study the integral equation (3.1) and its consequences, using a num
ber of approximations. We shall not further elaborate on the derivation of 
(3.1), but it may be noted that the formal limit of ÔR-+0 corresponds to 
separability between consecutive collisions. If there is no separability, the 
equation still holds, or may be easily amended, as long as collisions with 
moderate or large T-values remain separable.
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Besides separability we have assumed that successive collisions are not correlated. 

This holds if the atoms in the substance are in fact randomly distributed, or if e. g. 
impact parameters corresponding to sizable deflections are extremely small com
pared to interatomic distances, giving effectively uncorrelated events. A system 
where collisions are separated and uncorrelated may be termed a random system 
of atoms. The derivation of (3.1) is based on a random system, and we limit our 
treatment to this case. A solid with periodic lattice is for many purposes a random 
system, but at low ion energies deviations from (3.1) can occur. These deviations 
contain directional effects and are sensitive to lattice structure, cf. p. 32.

On the assumption that energy losses to electrons are small and sepa
rated from nuclear collisions, we obtain

- JV j (R, E - T,) -p (R, E) } 

-M(E)^/>(R,E),
(3-2)

which formula is somewhat less general, but applicable to our previous 
cross sections for scattering.

We may rewrite (3.2) on the assumption that the Thomas-Fermi-like 
scattering formula (2.9) applies (note that this also includes (2.6) and (2.6')), 
and then introduce the variables q and e. We readily obtain

(3-3)

where n^Q, e)(1q is the probability that a particle with energy parameter e 
has a range between q and g + dp, and where y = ^M1M2l(Ml+M2)2. We 
have seen that in a wide region (p<p1, i. e. roughly e<103), one may write 
(d£/c/p)e = k-E1/2. In equation (3.3) we then have two parameters, k and y.

A simple approach to the study of the integral equations (3.1), (3.2) or 
(3.3) is to obtain from these equations the moments < Rm > , whereby—at 
least in principle—the probability distribution itself may be determined too.

From (3.1) we obtain directly, when multiplying by Rm and integrating 
by parts

m</?m“1(E)> =

.V j d<7„,, R” (E) > - < R” (E - 7'„ 7’d) >}. (3-4)

2*
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Similarly, if (3.3) holds we arrive at a somewhat simpler relation

By means of equations (3.4) or (3.5) we may successively derive the first, 
second, etc., moments of the range. In the resulting formulas the equations 
(3.4) are applied, because they have a wider applicability. In actual evalu
ations, however, we turn to (3.5), and to the analogous reformulations of 
(3.6) to (3.13) in q - e variables, although the reformulations are not ex
plicitly stated. Let us ask for the average range Ë(E) = < > . Ac
cording to (3.4)

1 (3.6)

An obvious procedure in solving (3.6) is to make a series development in 
powers of T = Tn+ TH. This approximation might seem poor when 

i
because E—T can then take on any value between E and 0. 

However, we can profit from the circumstance that the energy transfer to 
electrons, Tei, is normally quite small, and that the nuclear scattering

i
cross sections (2.9) are strongly forward peaked, since f (f1/2) E3/2 decreases 
approximately as t to a power between -1 and - 2. We shall presently 
look into the accuracy of the various approximations.

Take at first only the first order terms in the brackets and denote the 
corresponding approximation to average range by R± (E). We obtain from (3.6)

dRi(E) = 1 - dE'
dE NS(E)’ ' J0MS(E')’ (3.7)

where S(E) = Sn(E) + Se(E) is the total stopping cross section. The formula 
(3.7) is exactly the straightforward equation (2.2) used in § 2.

Similarly, we can include higher order terms from (3.6),

1 _jVS(E)^fi(E)-l^ß2(E)^ß(E) +  (3.8)

where the quantity ß2(E) = >eT2 is related to the straggling. If we in

clude only the second order term we obtain a second order differential
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equation which may be solved directly. Still, since the second order term 
may be considered small, we may express the second derivative by means 
of This leads to B2(E), the second approximation to average range

S2(E)-jE dE' I
0WS(E')i

, , ^2(E) q i 11
dE-l.S(E-)^' (3.9)

The average square fluctuation in range, d R2(E) = R2(E) - R2(E), is 
obtained from the second moment in (3.4), if we multiply (3.6) by 2Æ(E) 
and subtract

j Jd R2 (E) - d R2 (E - T,-Z T„) } -

jj daniJR(E)-R(E- Î’.-Z7-«)} •
(3.10)

In this equation the right hand side is a known source term. If we take 
the same successive steps as in the computation of q , we make a series 
development in (3.10), in powers of T. The first terms on both sides of the 
equation lead to the approximation (dfi2)i,

S(E) ^(d R2)1 - fi!(E)(^fi (£)[, (3.11)

where for R(E) we should use the first approximation, R1(E). Therefore, 
also (3.11) brings us back exactly to our previous assumptions in §2, in 
this case to (2.4).

Including terms in (3.10) up to second order, we get

S(E)^(dR2)-£2(E) d2
2 dE2 (AR2) =

’o2 K(E)d^
2 dE

(3.12)

where K(E) = \daneT3. When assuming the new terms in (3.12) to be J ___
small, we obtain the second approximation to (AR2),

d Q2 (E) I / K 5i22\dS 1 dQ2\
dE^H S3(E)N2[ +\Q2S 2S2)dE + 2SdEj (3.13)

By means of the expression (3.13) we are able to estimate the accuracy of 
the straightforward formulas (3.11) and (2.4). It is important to notice that
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Table 1
Comparison of first and second approximation of expansion in y, for power law 

scattering. Results for average range and range straggling.

s R2/R1 (d 7?2)2/(d 7?^

3/2 ... 1 t-y/24 1 E y-0.10
2......... 1 1 + y/6
3......... 1 -y/15 1 +y-0.14

the successive approximations made above are simply series expansions of 
average range and straggling to successive powers of y = TmfE.

It is of interest to compare the above approximations. For simplicity let 
us consider low energies and disregard electronic stopping. Since electronic 
stopping here tends to diminish fluctuation effects, we obtain in this way 
slightly exaggerated differences between successive range approximations. 
Moreover, we use power law scattering cross sections (2.6) or (2.6'). This 
permits exact computation of B(F'). Note that according to (2.6) the ranges 
are proportional to E2ls, while the square straggling in range behaves as 
Ei/S. We may compare P15 7?2 and R, and similarly (dß2)1, (d/î2)2 and 
zl R2. The results depend on y, i. e. on the mass ratio. For small values of 
y, a series development in powers of y is accurate. Since y is often close to 
its maximum value, y = 1 , we also compare the approximations in this 
case. The results arc listed in Table 1 (y<< 1) and Table 2 (y = 1), in the 
cases s = 3/2, 2 and 3. Notice that at low energies values of s between 2 
and 3 are of particular interest.

In the approximation used in Table 1 the range R2 and its fluctuation 
(dZ?2)2 are equal to the exact average values R and AR2, respectively. From 
Tables 1 and 2 it is apparent that jR2(B) is always a very good approximation 
to R(E), and one need not distinguish between the two. The range Ri(E) 
is somewhat less accurate, but deviates from R(E) by no more than 10 per
cent in the least favourable case (y = 1). In actual range observations the 
deviation is reduced by electronic stopping and by the change in effective 
s with particle energy. There remains a difference between 7?i and R only 
at the lowest values of e. For our present purposes where all range curves 
(e. g. Figs. 3 and 4) are stated in terms of Ri(E) we need hardly distinguish 
between R^E) and R(E), be cause of obvious uncertainties in theory and 
experiment. Still, one might ask why the range curves are computed for 

in place of R2. This is simply because a universal range curve would not 
result when R% is used.
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Table 2
Comparison of first and second approximation with exact formula when y = 1. 

Average ranges and range straggling for power law scattering.

s R/Ri P/^2 (d (d P2)/(d JP)2

3/2......................... 1.053 1.01 1.03 0.94
2 1 1 1.20 1.03

3............................. 0.904 0.97 1.26 1.10

The straggling approximations (J /?2)x and (d/?2)2 are, as a rule, a little 
smaller than ZIP2 when y = 1. This deviation becomes quite pronounced 
if instead we consider the relative straggling in range. Thus, in the extreme 
cases of s = 3 and y = 1 we have (d P2)i/7?2 = 0.133 according to (2.13), 
while Z1P2/P2 = 0.20 for y = 1 and 2<s<3. At quite low values of e, and 
y = 1, the straggling in Fig. 6 is therefore somewhat lower than the straggling 
in average range; still it is noteworthy that the electronic stopping has a 
considerable influence on straggling also for quite low values of e. We infer 
moreover that the absolute values of range straggling in Fig. 7 are expected 
to represent AR2 quite accurately, i. e. they are superior to the relative 
straggling values in Fig. 6. Note that the deviations are only important when 
y = 1 . The outcome of the discussion in the present chapter is therefore that 
the simple quantities Rr and (Zl J?2)i, introduced already in §2, are satis
factory estimates of average range and average square fluctuation in range.

Results for power law scattering

In the interesting case of power law scattering, (2.6'), the formula (3.3) takes 
a particularly simple form if electronic stopping is neglected. In fact, we then obtain

~ P(r,E) = ( ~^y,{(i - yy)~2/s P(r ■ [1 - yy] 2/s, ■ [1 - yy]) - T(r,e) }, (3.13) 
dr Joyi+1/S

where r = (2ye2/s)_1 and P(r, e)dr = 1. If the power law holds down to zero
energy, equation (3.13) permits us to choose P(r, e) independent of e, and an ex
tremely simple recursion formula is obtained for the moments of the distribution,

0-(’-r!/)2”"}iï7î7ï- <314> 
0 »

The moments therefore only depend on one parameter, y, for any given power law 
scattering.

This result, where virtually the whole range distribution is determined im
mediately for any energy when merely the power s is stated (and y is known), is 

m <rm~ 1 > = <rm > • I (y, m, s), I (y, m, s) =
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clearly a direct consequence of universal cross sections, /(f1/2). In a more qualitative 
sense, it is apparent that if at one particle energy a cross section is given as a function 
of TITm = sin2#/2, this cross section leads to a certain ion-atom potential from 
which the scattering at all lower energies may be derived. This circumstance is 
expressed in an approximate way by the unified cross section, (2.9), and the results 
happen to be analytically simple for a power law cross section.

The integral 7(y,m,s) may be expressed by means of the incomplete beta 
function (cf. Erdélyi et al. (1953)),

I (y, m, s) = -s {1 — (1 - y)2m/s\ _|_ 2 my1/*  By î 1 — (3.15)

and is particularly simple when y < < 1, in which case a power series in y converges 
rapidly,

7 (y, m, .s)

y2 s-1
+ T~2 Ô----, (2 m - -s) (m - s) +3 s2 3 s - 1

, y < < 1.

(3.16)

An interesting case is also y = 1, where the incomplete beta function in (3.15) be
comes the usual beta function Bi(p,q) = r(p) r(q)/r(p + q).

The results in (3.14), (3.15) and (3.16) were used in Tables 1 and 2 for the com
putation of the first and second moments in various approximations. It is easy to 
derive also higher moments.

§ 4. Projected Ranges and Associated Quantities
Average projected range

An interesting quantity appears to be the projection of the range on the 
initial direction of the particle path. This quantity is often observed directly. 
Thus, one might be concerned with a collimated beam of particles passing 
through a number of foils perpendicular to the direction of the beam; the 
number of particles collected in each foil gives just the distribution in range 
projected on the initial direction of the beam. We may, in fact, define the 
concept of projected range as follows. A particle starts inside an infinite 
homogeneous medium from the origin in the direction of the .r-axis; the 
value of r for the end point of the path is the projected range, Rp. The 
distribution in x is the distribution in projected range. Quantities of particular 
interest here are the average projected range, Rp = Rp(E), and the average 
straggling in projected range, A Rp = R^-R2p.
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An integral equation for the average projected range may be obtained 
in analogy to the derivation of (3.1). We find readily

1 - -N jj ^n.e 'A (E) - Ä, (E - T) COS (?), (4.1)

where T = Tn+^\ Tei, and is the deflection of the ion in the laboratory 
i

system. There is a close similarity to the integral equation (3.6) for the 
average range, the only difference being the factor cos cp in (4.1).

Let us consider some approximations which can be useful in solving 
(4.1). If always T<<E, i. e. y<<l, or if Rp is nearly proportional to E, 
we may write

1 = Hpl(E)N^<TW)e(l - cos (p) + ^^^N^d(Jne- T-cosip. (4.2)

This approximation is similar to the one for Rx in (3.7) and (2.2), and we 
therefore use the notation Rpl for the projected range in (4.2). Actually, if 
the deflection <p may be neglected, we obtain (dRpl/dE) = N-S, i. e. Rpl 
becomes equal to R±.

When solving (4.2) we can introduce the familiar transport mean free 
path, 2{r, and a transport stopping cross section, Str,

= 2vÄ</<T„ e(l — COS Ç?), Str = \d°n,e T COS (p
Atr •' •'

With this notation, equ. (4.2) becomes

1 Rpi (-E) dRpi (E) $
1_Âlr(E)+ dE

which equation (4.4) has the solution

R (E} f dE- exJf___ _____I'1’ )0MS„(E') Pi.l£llr(E--)N-S<r(E")

and this result should be a good approximation to Rp(E) if y is small, or 
if Rp is nearly proportional to energy. We may solve the equation for Rp 
in the lowest approximation. This corresponds to taking the leading term 
in a series development in pi = M2lMlt assuming pi to be small. The ap
proximation is similar to that in § 3, for y << 1. In the limit of small pi, the 
angle <p is always small and we need only include çAterms in (4.3). Using

(4-3)

(4-4)

(4.5)
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Fig. 8. Correction for projected ranges (ö,-Qpdl~Qpi = /iy>, to first order in the mass ratio 
fi = Curves are shown for pure nuclear stopping and for three values of electronic

stopping parameter k.

the nuclear scattering cross section (2.9) and electronic stopping (dejdQ)e = 
Tc’fi1/2, we have computed the first order correction from average projected 
range to average range along the path. The resulting curves are shown in 
Fig. 8, for various values of k, and also for pure nuclear stopping.

It is more difficult to obtain accurate approximations to Rp when ii is 
large, corresponding to large angles of scattering, (p. We use the approximate 
equation (4.5) and profit from the circumstance that Rp is not far from being 
proportional to energy. By means of (2.9), solutions were obtained for // = 1 
and /z = 2, and a few representative values of the electronic stopping para
meter k. The results are shown in Fig. 9.

The power law approximation of nuclear scattering, (2.6), with neglect 
of electronic stopping, permits accurate solutions for Rp. We utilize the cir
cumstance that Rp^Ei,!. As an example, we consider the useful case of 
s = 2. The exact solution of (4.1) and (3.6) leads to (Lindhard and Scharff 
(1961))

= _3zz + (5+zz)y^arccosf7^^ = 1+1^’ s = 2- <4-6)
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Fig. 9. Approximate curves for Q^Qp-y for large values of the ratio jj. = M<JM Y and a few values 
of k.

As may be seen from Fig. 8, the rule-of-thumb R/Rv = 1 + /z/3 is a fair 
approximation at low energies.

As a further example we may quote the value of R/Rp for small lu, and 
any value of s,

(4.7)

which approximation is quite accurate up to /z~l.

Associated range concepts

The average projected range is determined by one closed equation. 
However, the equations governing the higher moments of the projected 
range are far more complicated. If we treat the average square of the pro
jected range, Rp, we must also introduce the average square of the range 
projected on the plane perpendicular to the initial direction, R%. The average 
square of the distance between the starting-point and the end point of the 
path is then R% = R^+R^. We may describe Rc as the chord range (also 
referred to as vector range). These range concepts are illustrated in Fig. 10.
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Fig. 10. Sketch illustrating definition of range concepts R, Ry, Rc and R±.

The integral equations for R? are derived in a similar way as (3.1). The 
following two equations are obtained, after rearrangement of terms,

(4.8) 

2/!p(E)-lvjdo„,e®(E)-(l-?sin2^Bä(E-T)|, (4.9)

where

= and . (4.10)

The two equations (4.8) and (4.9) may be solved separately, and then R% 
is found from (4.10).

First order solutions of (4.8) and (4.9), for /z<< 1, can be obtained in 
a direct manner. However, we shall merely consider the case of power law 
scattering, with neglect of electronic stopping. The exact solutions may then 
be expressed as beta functions. In Table 3 we quote the results for /z = 1 
and various values of s. It is seen that in these cases AR% is of order of AR2.
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Table 3
Straggling in projected range for power law scattering and /* = 1.

s 3/2 2 3

ARt/AR1,, . 1.25 1.33 1.38

■■■ 0.204 0.275 0.341

§ 5. Comparison with Experiments

As an illustration of the connection to experiments, we present a brief 
survey of recent experimental results, interpreted on the lines of the theory 
of this paper. Before that, it may be worth-while to summarize briefly and 
comment on the salient features of this theory.

A primary result is that a simple-minded theory of ranges and their 
fluctuations, as described in § 2, is quite accurate and that corrections of 
various kinds for projected ranges, etc., may be made without much dif
ficulty, if necessary. A second result, somewhat independently of the details 
of the theory of collisions, is that a q - e plot is useful for a study of ranges 
of particles with eclOOO, and particularly for 10. A third result is that 
for any ion of high energy a range correction, A, for the effect of nuclear 
stopping has been obtained, which permits a more accurate study of elec
tronic stopping. Fourth, e. g. various isotope effects can serve to check 
several details of the theory, as may also observations of range straggling.

A theoretical result of special interest is that for ZY = Z2 the electronic 
stopping constant is &~0.15, except when = 1. Therefore, the range 
energy curve for Zv = Z2 should be closely a single curve in a p — e plot. 
However, the corrections for e. g. projected ranges are not negligible in 
this case.

The numerical results computed here are based on a much simplified 
model of collisions. It is certainly possible to introduce a more detailed 
description of the collisions (cf. Notes on Atomic Collisions I and IV), and 
thereby improve on the present theoretical results. However, it may be more 
important to remove uncertainties and to correct misconceptions in the theory 
by measurements of range and stopping.

Another important circumstance is that direct comparisons with measured 
ranges may be made preferably in gases, where successive collisions are 
uncorrelated. In several respects stopping in solids may also answer the 
purpose, but experiments at low ion energies clearly seem to indicate the



30 Nr. 14

.002. ,oo5 .o/ ,o2 o5 .i .2 .5 /o 2.
Fig. 11. Comparison between theoretical curves for ^j(e) given by (2.2), (2.9), (2.10) and (2.11), 
and measurements for e < 2. As indicated on the figure, numbers 1, 2, 3, 4, 5 and 6 refer to stopping 

gases II2, D2, He, N2, Ne and A, respectively. For further comments cf. text.
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kind of correlation of collisions described as tunnelling (cf. Piercy et al. 
(1963)), with strong directional effects and range lengthening in certain 
crystal structures. Although these range effects are in themselves highly 
interesting, their special character make them less suited in a general first 
comparison between range theory and experiments. In e. g. amorphous 
solids the effect appears to be absent, as was to be expected.

It should be appreciated that in the following we have merely made a 
compilation of measurements; not all of them are plotted in the figures. 
We are not in a position to make any critical examination of the experiments, 
some of which are in mutual disagreement or obviously inaccurate. We 
have included primarily the more recent measurements. A review of previous 
observations is given by Harvey (1960). We are mainly interested in ex
periments where nuclear stopping is dominating, and do not discuss electro
nic stopping. Northcliffe (1963) has given a valuable survey of measure
ments on stopping in the energy region just above the one considered here, 
i. e. when electronic stopping dominates and goes through a maximum.

In plotting the results we have made approximate corrections for pro
jected ranges, etc. Normally, the range measurements are plotted directly 
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on the ligures, and range corrections are indicated by arrows. In some cases 
our knowledge of the measurements was too scanty to permit a range cor
rection. As a general rule, we have corrected for projected ranges, etc., only 
if the correction exceeds ~10 percent.

Fig. 11 shows the theoretical range curve for values of e smaller than 2, 
where nuclear stopping is quite dominating. The ranges for pure nuclear 
stopping are given by the upper solid curve, denoted as Th.-F. on the figure. 
A curve for exceptionally large electronic stopping, i. e. k = 0.4, is also 
shown. The actual Å'-values are quite small, and thus the expected ranges 
should be close to the Th.-F. curve. Further, note the dashed straight line 
corresponding to range proportional to energy, q = 3.06e. It should be 
emphasized that for extremely low energies, e~ IO-2, the theoretical curve 
is not too well-defined.

Harvey, Wade and Donovan (1960) observed projected ranges for 
At205 and At207 ions in bismuth. The At recoil ions were produced by a-bom- 
bardment of a bismuth foil, leading to an (a, xn) process. This resulted in 
At ions with various energies between 400 and 900 keV; the energies were 
not sharply defined. Approximate corrections for projected range are shown 
by arrows in Fig. 11. The observations of Harvey, Wade and Donovan 
are in satisfactory accord with the predicted ranges.

Powers and Whaling (1962) studied projected ranges of monoenergetic 
ions of nitrogen and inert gases in several solids. The depth of penetration 
of the ions was obtained from a subsequent analysis of the distribution in 
angle and energy loss of protons scattered from the ions imbedded in the 
target. The ranges of Powers and Whaling are generally in good agreement 
with the theoretical curves. In the figure, we have included only their range 
measurements for Xe in Be and in Al. The corrections for projected ranges 
are quite small and are omitted. The ranges in Al may be compared with 
those of Davies et al. in Fig. 12. These two range observations for Xe in Al give 
quite different results and are placed on either side of the theoretical curve.

Valyocsik (1959) made accurate observations of ranges of Ra224 and 
Th226 recoil atoms with, respectively, 97 and 725 keV energies. Ranges are 
measured in gases using the electrostatic collection technique of Ghiorso 
and Sikkeland. Ranges and range stragglings were observed in deuterium, 
helium, nitrogen and argon, and in hydrogen and neon (only for Ra ions). 
The observations are shown in Fig. 11. They are in good agreement with 
theory (between 0 and 20 percent below theoretical ranges), and correspond 
to k = 0.12, except in hydrogen where k = 0.16.
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Fig. 12. As Fig. 11 ; measurements of median ranges by Davies et al. in Al. Ranges at low energies 
exceed theoretical curves, probably as an effect of tunnelling in crystal lattice.

A few measurements by the Copenhagen group (Sidenius, private com
munication) are also included in Fig. 11. The projected range of Au198 ions 
of energy 50 keV is measured by electrostatic collection. The correction for 
projected range is negligible. The ranges are slightly above theoretical curves. 
The ^-values are as in Valyocsik’s measurements.

Davies et al. (1960, 1961 and private communication) have observed 
projected ranges in Al, for the following ions: Na24, A41, K42, Rb86, Xe133 
and Cs137. Monoenergetic radioactive ions of energies between 1 keV and 
2 MeV enter a polished Al surface. Thin layers of Al are removed suc
cessively by electro-chemical means and the residual activity is measured. 
In this way the distribution in projected range is obtained. The range values 
of Davies et al. in Fig. 12 are median ranges. At the higher energies there 
is good agreement with theoretical curves.

The measurements by Davies et al. were made with polycrystalline Al. 
It has turned out that the structure of Al is such that tunnelling of the ions 
may occur, whereby the average range becomes considerably larger than 
for a random system, and the range distribution has an exponential tail 
(Piercy et al. (1963)). The results of Piercy et al. for Kr85 in Al and A12O3 
at 40 keV are compared with theoretical estimates in Table 4. There is
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Table 4
Ranges (in /zg/cm2) of 40 keV Kr85 in Al and A12O3, and average square straggling in 
range. Experimental results by Piercy et al. Computed results (columns 3 and 5) 

are for random system, as indicated.

pined 
exp

D
exp

D
rand ^Rf2,and

Al...................................... 9.0 11.5 7.1 91 4.6
A12O3............................... 7.7 7.7 6.5 7.8 3.5

satisfactory agreement in the amorphous substance AI2O3, both as regards 
ranges and straggling. It appears also from Table 4 that the experimental 
median range in Fig. 12 is probably somewhat larger than the average ranges 
of a random system of Al atoms. We therefore infer that the results of 
Davies et al. in Fig. 12 are not in contradiction to the theoretical ranges 
of a random system. Note the very large experimental range straggling in 
Table 4 for Al, characteristic of an exponential distribution, where A R2 =R2.

There are several other measurements in the regions of energy cor
responding to Figs. 11 and 12. Thus, Baulch and Duncan (1957) obtain 
ranges of a-recoils (e/$0.1) from 0 to 10 percent below theoretical curves. 
The results of van Lint et al. (1961) are at the higher energies at least about 
a factor of 2 above theoretical expectations, while at lower energies (t ~0.04) 
agreement is fair. However, these measurements show a very considerable 
scatter. Guseva, Inopin and Tsytko (1959) measured ranges of mono- 
energetic Si30 ions in Ta and Cu backings, at energies between 10 and 
25 keV. The depth of penetration was estimated from proton energies 
necessary for a (p, y) process, together with knowledge of proton stopping. 
Their results are about a factor of 2 above the theoretical curves.

Fig. 13 shows some observations for Ice <100, and corresponds to 
Fig. 4 in § 2. We are here in a region where the electronic stopping begins 
to take over. It is then important to know the value of the constant k. Some 
of the projected ranges observed by Powers and Whaling (1962) are shown 
in Fig. 13, including one where the ratio p = (M2/M1)~2, i. e. the corrections 
for projected range are large. The agreement with theoretical curves is good.

Winsberg and Alexander (1961) and Alexander and Sisson (1962) 
measured projected ranges for Tb149 ions in aluminium, at energies be
tween 4 and 30 MeV, and for At and Po ions in aluminium and gold, at 
energies between 3.5 and 13 MeV. The projected ranges and the range 
stragglings were obtained from the activities in stacks of catcher foils. In 
Fig. 13 we have included results for At and Po in gold and for Tb149 in

Mat.Tys.Medd.Dan.Vid.Selsk. 33, no. 14. 3
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f 2. -5 fo 2o So foo 2oo Soo /ooo
Fig. 13. Comparison with range measurements in the region 1 <e<100, where electronic stopping 
becomes important. Theoretical ^-values are given, indicating the theoretical curve with which 

to compare the observations.

aluminium. There is good agreement with the theoretical curves. It may be 
noted that the ions were formed in a nuclear reaction with subsequent 
neutron evaporation.

In the case of A41 in aluminium, Davies et al. (private communication) 
performed measurements at energies so high that electronic stopping is im
portant. The ranges are in good agreement with the theoretical curves in 
Fig. 13.

Bryde, Lassen and Poulsen (1962) measured projected ranges for 
radioactive Ga66 recoil ions in gases using electrostatic collection. As typical 
representatives of their observations we have in Fig. 13 included ranges in 
hydrogen and deuterium. These ranges are about 40 percent above theoretical 
ranges. Bryde, Lassen and Poulsen also observed projected ranges for 
Ga66 in copper; the latter ranges are in good agreement with the theoretical 
curve. Also included in Fig. 13 are three measurements by Poskanzer (1963) 
of 1—3 MeV Ne22 ions in aluminium; these ranges are smaller than 
theoretical ranges. Finally, in Fig. 13 is shown the early measurements 
of ranges by Leachman and Atterling (1957), where recoil ions of At203
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Fig. 14. Comparison between theoretical curve and range measurements for fission fragments, 
nuclear stopping being eliminated. For large values of e the representation shown here is superior 

to that in Fig. 13.

and At205 penetrated a stack of aluminium foils, and projected ranges were 
measured. There is fair agreement, but apparently some fluctuations be
tween individual measurements.

As mentioned previously, in the present paper we do not attempt a 
systematic study of electronic stopping as obtained from measurements at 
high values of £. We may merely show two sets of representative measure
ments, where the nuclear stopping is eliminated, so that the extrapolated 
electronic range is obtained. For v<v± the theoretical extrapolated electronic 
range is oe = 2eriilk. Using theoretical range corrections for nuclear 
stopping, d(k, e), as indicated in Fig. 5, we have plotted in Figs. 14 and 15 
values of (A-/2) (q + d (k, e)} obtained from measurements of o. The theoretical 
curve is the straight line kQe/2 = e1/2 . Fig. 14 contains only measurements 
of ranges of fission fragments. In Fig. 14 is shown measurements by Niday 
(1961) of fission fragment ranges in uranium. Niday used a thick uranium 
foil packed in aluminium catcher foils. Fission fragments resulted from 
thermal neutrons. The fragments ending up in aluminium were separated 
by radiochemical means. In this way an estimate of the ranges along the 

3*
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Fig. 15. Some recent measurements of projected ranges for light atoms in gases, corrected for 
nuclear stopping only, like in Fig. 14. Full-drawn curve is theoretical range e1/2. Points stand 
for following ions in air: x Li, + B, AC, AO,  F, BNe, ONa, and following ions in argon: ®Li, 
7B, fN (measurements by Teplova et al.). Further, 0 indicates F in nitrogen, measured by 

Bryde, Lassen and Poulsen.

chord was obtained. The ranges of Niday should be corrected by approx
imately + 5 percent in order to obtain true ranges. The agreement with the 
theoretical range is good.

In Fig. 14 is also included observations on fission fragment ranges by 
Alexander and Gazdik (1960), Fulmer (1957) and Leachman and Schmitt 
(1954). In the case of gold, about 5 percent should be added in order to 
obtain true ranges. There is agreement within ~10 percent.

A number of other authors have measured ranges of fission fragments 
(Smith and Frank (1959), Katcoff, Miskel and Stanley (1948), Good 
and Wollan (1956), Bøggild, Arrøe and Sigurgeirsson (1947), Douthett 
and Templeton (1954), Suzor (1949), Porile and Sugarman (1957), cf. 
also the review article by Harvey (I960)). Some of the earlier measurements 
may be less accurate than those shown in Fig. 14, but generally there is 
approximate agreement with theory.
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As an example of light ions with substantial energies we have taken 
measurements of projected ranges by Teplova et al. (1962). A number of 
ions, from Li to Na, with energies in the interval 1—10 MeV, were slowed 
down in air, argon and hydrogen. Many of these measurements are shown 
in Fig. 15. On the figure is also shown a range value for F18 in nitrogen gas, 
measured by Bryde, Lassen and Poulsen (1962). We have not indicated 
corrections for projected ranges on Fig. 15, since the largest correction would 
be ~ + 8 percent (for Li in argon gas).

In connection with electronic stopping it should be noted that at low 
atomic numbers, and particularly at low values of Zx, there may be de
viations from the theoretical 7c-value based on a Thomas-Fermi treatment. 
At low atomic numbers one may expect variations in the measured Å*-values  
due to shell effects. As an extreme example from a Thomas-Fermi point of 
view, in the case of Li ions in hydrogen, deuterium and helium, it appears 
from measurements of stopping (Allison and Littlejohn (1957)) and of 
ranges (Clerc, Wäffler and Berthold (1961)) that the electronic stopping 
may be as much as 2-3 times less than given by (2.5). Measurements by 
Ormrod and Duckworth (1963) of electronic stopping in carbon for all ions 
with Z1^ll indicate minor shell variations around the value in (2.5).

Range straggling

As to straggling in range (cf. p. 14) we have not attempted any closer 
analysis. High accuracy is difficult to obtain in range straggling, and at low 
e-values (c<0.5) the rule-of-thumb (d q/q)2 = y/6 = MXM2(MX + M2y~2 •(2/3') 
is often sufficient. In many experiments a considerable fluctuation was 
present in the initial ion beam, e. g. because the ion resulted from a com
pound nucleus after neutron evaporation. The experimental range stragglings 
are often considerably above the curves. The measurements by Valyocsik 
on 97 keV a-recoils (cf. Harvey (I960)) correspond to rather well-defined 
conditions. For 97 keV Ra the straggling in nitrogen, neon and argon is 
comparable with the theoretical one (cf. Fig. 6), but in the light gases, 
hydrogen, deuterium and helium, the straggling is much in excess of theo
retical estimates. When subtracting a common constant of order of 0.016 
from the experimental straggling (d q)2xp, one obtains a relative straggling 
y_1(d@/p)2 = 0.14—0.18, in excellent agreement with theory (since 0.03-0.07, 
and 7c=0.12). For 725 keV Th ions, where 0.4-0.5, the experimental 
relative straggling is much too large in deuterium and helium. A reduction 
of (dp)gXp by=a0.04 in all gases would give a reasonable order of magnitude 
of the straggling. As a further example, many measurements by the Copen-
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hagen group show rather large straggling elTects, but some results (e. g. 
ranges of 50 keV Ga66 in hydrogen, helium, nitrogen and argon, shown in 
Fig. 11) with e* 0.3-0.5, have a straggling (Zl^/p)2 0.15-0.25. Even in
the difficult case of the lightest gases, where the theoretical straggling is 
extremely small, there is reasonable accord with theory.

Isotope effects

It is of interest to study isotope effects in range measurements. We shall 
treat the question of different isotopes used as stopping medium*.  Although 
electronic stopping may dominate in the value of the range itself, isotope 
effects can still give direct information about the nuclear stopping. An in
structive example is provided by the measurements of Bryde, Lassen and 
Poulsen (1962, and private communication). They observed ranges of Ga66 
in hydrogen and deuterium; at high energies RD is slightly larger than RH, 
while at low energies RH exceeds RD. Now, if there was only electronic 
stopping, the two ranges would be equal, so that differences are due to 
nuclear stopping. It is seen from (2.7) that the nuclear stopping behaves 
as Sn<x M2~2/s, when M1>>M2. At quite low energies, where the ion cannot 
penetrate deeply into the atom, the effective power of the potential is of 
order of .s = 3, and thus SnD > SnH. At high energies, where the screening 
is weak, the effective power approaches s= 1, and therefore SnH > SnD 
(Lindhard and Scharff (1961)). According to Fig. 2, the change-over in 
stopping occurs at an e-value smaller than 0.5. Correspondingly, in Fig. 4 
the change-over in slope—from lower to higher than that of the straight 
dashed line—occurs at e~l for the Th.-F. curve.

Instead of this qualitative explanation of experimental results we may 
directly compare experimental range differences with theoretical ones de
duced from Figs. 3 and 4. The results are shown in Table 5. Agreement 
between theoretical and experimental range differences is quite good,

* A measurement, where different isotopes are chosen for the incoming particle, is discussed 
by Lindhard and Scharff (1961).

Table 5
Differences between ranges in D2 and H2 for Ga66 ions. Ranges are in mm at 300° K, 

760 mm Hg.

Energy (keV) 1190 790 610 50

(2?£>-I?h)zä................ 0.9 0.7 0.6 -0.05

{RD — RtRexp ................ 1.5 0.8 0.5 -0.05
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especially at the lower energies. This result is obtained in spite of the fact 
that at the three higher energies the absolute ranges of Bryde, Lassen and 
Poulsen are as much as — 40 percent higher than theoretical ranges (Fig. 13).

In further measurements by the Copenhagen group (Sidenius, private 
communication), other examples of isotope effects were obtained for 50 keV 
ions. Thus, for Na24 in hydrogen and deuterium (e = 2.4 and 4.65) one found 

= +0.157 mm, while (/?£> — Rff)th = +0-104 mm, the ranges 
themselves being of order of 0.9-1.0 mm, and ~50 percent larger than 
theoretical ranges. For Au198 ions in hydrogen and deuterium, e is so small 
(e = 0.024 and 0.047) that the effective power has shifted to s>2, and 
(RD~Rir)exp = “0.061 mm, while (RD - RH)th = - 0.087 mm ; experimental 
ranges are ~ 0.4 mm, i. e. about 30 percent larger than theoretical ranges. 
Finally, for Ga66 in helium isotope gases (e~0.4) one found (RHei - RHe3)exp 
= -0.016 mm, to be compared with (Rh^ ~ RHe3)^ = - 0.006 mm; ex
perimental ranges are ~0.4mm, or 20 percent above theoretical ranges. All 
ranges quoted here are in mm at 300° K, 760 mm Hg. The agreement with 
theoretical isotope shifts of ranges is thus fairly good, and it is interesting 
that normally the change from larger to shorter range in the heavier isotope 
occurs at £~1.
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